Synthesis and Characterization of 1-(Cl₂B)B₅H₈ and 1-(Cl₂B)-2-ClB₅H₇: A New **Boron–Boron** σ **Bond**

DONALD F. GAINES,* JOSEPH A. HEPPERT, DARRELL E. COONS, and MICHAEL W. JORGENSON¹

Received February 16, 1982

Two new 1-(dichloroboryl)pentaborane(9) derivatives, $1-(Cl_2B)B_5H_8$ and $1-(Cl_2B)-2-ClB_5H_7$, have been produced via the reaction of BCl₃ with B₅H₉ and 2-ClB₅H₈, respectively, in the presence of Friedel-Crafts catalysts. These compounds are the first examples of σ bonding between borane cluster atoms and external trigonal boron atoms. The boron-boron bonds undergo cleavage at elevated temperature in the presence of diethyl ether and insert ethylene at ambient temperature to form 1-[2-(dichloroboryl)ethyl]pentaborane(9) derivatives.

Introduction

Boron hydrides containing discrete boron-boron σ bonds are relatively rare. Those known fall into two general groups. The first group contains compounds having boron-boron intercage bonds; examples of this class include the three isomers of $(B_5H_8)_2$ ^{2,3} Compounds in the second group contain at least two trigonal boron atoms bound to each other primarily via boron-boron σ bonding: The diborane(4) derivative B₂Cl₄ is an example of this group. (For purposes of this discussion we have excluded the tetracoordinated Lewis base adducts of diborane(4) derivatives.) These two types of boron-boron bonds exhibit very different chemical behavior. For example, B_2Cl_4 is prone to cleavage reactions, as is illustrated by its reaction with ethylene (eq 1).⁴ Intercage boron-boron bonds,

$$\mathbf{B}_{2}\mathbf{Cl}_{4} + \mathbf{CH}_{2}\mathbf{CH}_{2} \xrightarrow{-78 \ ^{\circ}\mathbf{C}} \mathbf{Cl}_{2}\mathbf{B} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{BCl}_{2} \quad (1)$$

by contrast, are far less reactive. The cleavage of $1,2'-(B_5H_8)_2$ under Friedel-Crafts conditions is one of the few known examples of intercage boron-bond cleavage.⁵

$$R-X + 1,2'-(B_5H_8)_2 \xrightarrow{AlX_3} 1-RB_5H_8 + 2-XB_5H_8$$

$$R = H, Et$$
(2)

Compounds containing a trigonal boron moiety σ -bonded to a boron in a boron hydride cluster have not been previously prepared. In this paper we report the preparation, via Friedel-Crafts syntheses, of 1-(Cl₂B)B₅H₈ (I) and 1-(Cl₂B)-2- ClB_5H_7 (II), the first examples of apical X_2B substitution in pentaborane and the first compounds illustrating a combination of the two classes of discrete boron-boron σ bonding.

Experimental Section

Inert-atmosphere manipulations were performed in nitrogen-filled glovebags and standard high-vacuum systems.⁶ All solvents were dried over $LiAlH_4$ and degassed before use. Boron trichloride (technical grade) and ethylene (chemically pure) were used, as obtained from the Matheson Co. The 2-chloropentaborane (2-ClB₅H₈) was prepared by the literature method.⁷ Aluminum trichloride was purified by repeated sublimations. Iron trichloride was obtained as the ACS reagent hexahydrate and was dried by the standard method.8

- Acaa. Sci. U.S.A. 1961, 47, 996-999.
 (3) Gaines, D. F.; Jorgenson, M. W.; Kulzick, M. J. J. Chem. Soc., Chem. Commun. 1979, 380-381.
 (4) Urry, G.; Kerrigan, J.; Parsons, T. D.; Schlesinger, H. I. J. Am. Chem. Soc. 1954, 76, 5299-5301.
 (5) Gaines, D. F.; Heppert, J. A., unpublished results.
 (6) Schriver, D. F. "The Manipulation of Air Sensitive Compounds"; MacGray, Hills. New York, 1960.

- McGraw-Hill: New York, 1969.
- Gaines, D. F.; Martens, J. A. Inorg. Chem. 1968, 7, 704-706.
- (8) Pray, A. R. Inorg. Synth. 1957, 5, 154-156.

Table I.	¹¹ B NMR	Spectral Data	for Land	П
140101.	D D D D D D D D D D D D D D D D D D D			

compd	B resonance	chem shift, ppm	multiplicity; coupling const, Hz
$1-(Cl_2B)B_5H_8$ (I)	Cl ₂ B	75.7	q;J _{BB} ≃124
	B2-B5	-13.1	$d; J_{BH} = 160.6$
	B1	-51.8	br s
$1-(Cl_2B)-2-ClB_5H_7$ (II)	Cl ₂ B	73.0	$q; J_{BB} \simeq 122$
	B2	-1.6	s
	B3, B5	-14.0	$d; J_{BH} = 173.5$
	B4	-23.6	$d; J_{BH} = 173.5$
	B1	-51.6	br s

Table II. ¹H NMR Spectral Data for I and II

compd	H resonance	chem shift, ppm	multiplicity; coupling const, Hz
$1-(Cl_2B)B_5H_8$ (I)	H2-H5 H6-H9	2.31	$q; J_{BH} = 167$
1-(Cl ₂ B)-2-ClB ₅ H ₇ (II)	H3, H5 H4 H6, H9 H7, H8	2.25 2.00 -1.05 -2.79	$q; J_{BH} = 172$ $q; J_{BH} = 168$ br s br s

Phosphorus trichloride was distilled under dry nitrogen and degassed just prior to use. Tri-n-butyltin hydride was used as received from Alfa Chemical Co.

All NMR spectra were obtained on a Bruker WH-270 spectrometer at 270.071 MHz for ¹H and 86.653 MHz for ¹¹B. The ¹¹B NMR spectra were acquired over a 13 000-Hz sweep width and were referenced to BF_3 ·OEt₂, while the ¹H spectra were acquired over a 6000-Hz sweep width. Mass spectra were obtained on an AEI MS-9 instrument at 70 eV. Infrared spectra were obtained with a Perkin-Elmer Model 700 spectrophotometer and a 10-cm gas cell. X-ray powder patterns were collected with use of Ni-filtered Cu K α radiation and a 114.57-mm Debye-Scherrer camera.

Preparation of 1-(Cl₂B)B₅H₈ (I). A 75-mL stainless-steel bomb equipped with a stainless-steel valve was evacuated overnight, filled with dry nitrogen, and charged with 0.1 g of AlCl₃. After evacuation, 0.151 g (1.10 mmol) of PCl₃, 0.695 g (11.0 mmol) of B₅H₉, and 2.836 g (24.20 mmol) of BCl₃ were condensed into the bomb. The bomb was sealed, warmed to room temperature, and heated at 110-120 °C for 6 days. The bomb was then opened on the vacuum line, and the mixture was distilled into a -45 °C U-trap followed by a -196 °C U-trap. Compound I condensed in the -45 °C U-trap. Yield: 0.140 g (0.97 mmol), 8.8% based on B_5H_9 .

Compound I is a colorless liquid, with a vapor pressure of $11 \pm$ 1 torr at 23 °C. The mass spectrum of I exhibits the parent ion ¹¹ $B_6^1H_8^{35}Cl_2$: calculated, m/e 144.0561; observed, m/e 144.0558. The infrared spectrum of I contains major bands at 2640 m, 995 m, 960 s, and 890 w cm⁻¹ (all ± 10 cm⁻¹). The ¹¹B and ¹H NMR data for I are listed in Tables I and II.

Preparation of 1-BCl₂-2-ClB₅H₇ (II). In a typical reaction a 100-mL round-bottom reactor equipped with a 12-mm Kontes O-ring stopcock and a Teflon stir bar was evacuated for several hours and then filled with dry nitrogen gas. Anhydrous FeCl₃, 0.94 g, was transferred into

⁽¹⁾ Current address: Union Carbide Corp., Tarrytown Technical Center, Tarrytown, NY 10591.

Grimes, R. N.; Wang, F. E.; Lewin, R.; Lipscomb, W. N. Proc. Natl. Acad. Sci. U.S.A. 1961, 47, 996–999.

1-(Dichloroboryl)pentaboranes(9)

the reactor in a nitrogen-filled glovebag. The flask and FeCl₃ were evacuated overnight with use of a high-vacuum line. Then 1.50 g (15 mmol) of 2-ClB₃H₈ and 1.50 mmol of BCl₃ were condensed into the flask at -196 °C. The flask was sealed, warmed to 45 °C, and stirred for 4 days. As the reaction proceeded, the black FeCl₃ catalyst lightened in color, finally becoming cream white.

The reaction mixture was separated by repeated distillations with a -30 °C U-trap followed by a -196 °C U-trap. The material that condensed in the -30 °C U-trap was identified as II. Yield: 0.027 g (0.16 mmol), or 11% based on BCl₃ (the best yield obtained has been 25%). In addition, 1.32 g (88%) of the original 2-ClB₅H₈ was recovered by distillation of the remainder of the reaction mixture through a -63 °C trap. About 2.4 mmol of BCl₃ and small amounts of B₅H₉, HCl, and H₂ were also observed.

Compound II, a clear liquid melting near -20 °C, is extremely air and moisture sensitive. It was characterized by its ¹¹B and ¹H NMR spectra (Tables I and II) and by mass spectroscopy. The mass spectrum of II exhibits the parent ion ¹¹B₆¹H₇³⁵Cl₃: calculated, *m/e* 178.0177; found, *m/e* 178.0182.

Reaction of I with Diethyl Ether. A 5-mm NMR tube was charged with 0.046 g (0.32 mmol) of I, 0.34 mmol of diethyl- d_{10} ether and about 0.5 mL of C₆H₆ solvent. The tube was sealed and warmed briefly to ambient temperature to mix the reagents, then cooled to -40 °C, and stored for 1 day. The ¹¹B NMR spectrum showed only I. The sample was heated to 50 °C for 2.5 days. Although the ¹¹B NMR spectrum of the sample was similar to that of I, the low-field resonance was broadened and shifted upfield to about 50 ppm. A small sharp resonance also appeared at 11.5 ppm. The sample became gelatinous after further heating at 65–75 °C for 6 days but gave a clear ¹¹B NMR spectrum showing primarily B₅H₉. (It is assumed that 1-DB₅H₈ was formed in the initial decomposition reaction and that subsequent interaction of the borane with the ether scrambled the label.) A small amount of I was still present.

Reaction of II with Diethyl Ether. An NMR tube containing equal quantities of compound II and diethyl ether in C_6D_6 was prepared. A similar sample was made containing only II in C_6D_6 solution. The samples were examined by ¹¹B NMR after several hours at room temperature and were found to contain only pure II. After 2 days of heating at 80 °C, no change had occurred in the control sample; in the sample containing ether, however, II had been completely converted to 2-ClB₃H₈.⁷ Three small singlets were also observed at 25.6, 30.9, and 46.2 ppm; however, unambiguous assignment of their identity was not possible. No solid residues were observed in either tube, and only a slight yellow color appeared in the sample containing ether.

Reaction of II with n**-Bu**₃**SnH.** In a typical reaction, 3.7 mmol of n-Bu₃SnH was placed in a nitrogen-filled reaction vessel. The reactor was cooled to -196 °C and evacuated, and 0.035 g of II was condensed into it. The vessel was sealed, warmed to ambient temperature, and allowed to stand for 1 week. A deep orange color developed as the reaction progressed. On fractionation through a -96 °C trap, one reaction yielded a small amount of white solid melting at about -10 °C. Boron-11 NMR confirmed the identity of this product as $1,2'-(B_5H_8)_2$.⁹ Examination of volatile and nonvolatile products of other reactions by ¹¹B NMR revealed the presence of other pentaborane oligomers that have not as yet been fully characterized.

Reaction of I with Ethylene. A 0.5-mmol sample of I was condensed at -196 °C into a 5-mm thick-walled NMR tube. Sufficient pentane was added to bring the combined liquid height to 3 cm. The solution was frozen at -196 °C, and 0.3 mmol of C_2H_4 was condensed into the tube above the frozen sample. The tube was sealed and allowed to warm from -78 °C to ambient temperature over 1 day.

The progress of the reaction was monitored by ¹¹B NMR for 3 weeks. During this period, a diminution in the intensity of the Cl_2B and B(1) resonances of I was accompanied by the appearance of two singlet resonances at 63.3 and -42.0 ppm. At the end of 3 weeks, the reaction had proceeded to approximately 50% conversion of I based on peak areas, or about 80% conversion based on the C_2H_4 limiting reagent.

Subsequently the reaction mixture was distilled through a -30 °C U-trap and was stopped in a -196 °C U-trap. A portion of the material in the -30 °C trap was taken for mass spectroscopic analysis. The mass spectrum of the sample exhibited the parent ion ${}^{12}C_{2}{}^{11}B_{6}{}^{11}H_{12}{}^{35}Cl_{2}$:

Figure 1. 86.6-MHz ^{11}B NMR spectra of $1\text{-}(Cl_2B)B_5H_8$ (I) and $1\text{-}(Cl_2B)\text{-}2\text{-}ClB_5H_7$ (II).

calculated, m/e 172.0874; found, m/e 172.0874. A large envelope around m/e 144 indicated that significant quantities of I were also still present.

Reaction of 1,2'-(B₅H₈)₂ with FeCl₃. Approximately 1 g of anhydrous FeCl₃ was loaded into a small reactor containing a Teflon stir bar. The reactor was evacuated, and 1.5 mmol of 1,2'-(B₅H₈)₂ was condensed into it at -196 °C. The reactor was sealed and warmed to 40 °C with stirring for 4 days. On distillation of the volatile portion of the reaction mixture, small amounts of BCl₃, 2-ClB₅H₈, B₅H₉, and 1,2'-(B₅H₈)₂ were separated and identified by IR spectroscopy. The reaction residues were then extracted with benzene and transferred to a water-cooled sublimator. The benzene was removed under vacuum, and after the contents were warmed to 45 °C, a white crystalline solid sublimed. On the basis of ¹¹B and ¹H NMR spectra the sublimate was tentatively identified as 1'-Cl-1,2'-(B₅H₈)(B₅H₇). Mass spectroscopy confirmed the formula, giving a parent ion ¹¹-B₁₀¹⁰H₁₅³⁵Cl₁ or ¹¹B₈¹⁰B₂¹H₁₅³⁷Cl₁: calculated, *m/e* 160.1793 or 160.1836; found, *m/e* 160.1822.

Results and Discussion

Synthesis and Characterization of I and II. Compound I, $1-(Cl_2B)B_5H_8$, has been isolated from the reaction of B_5H_9 and BCl_3 (eq 3). No reaction was observed in the absence

$$B_{5}H_{9} + BCl_{3} \xrightarrow{AlCl_{3}/PCl_{3}} 1-(Cl_{2}B)B_{5}H_{8} + HCl$$
 (3)

of either or both catalysts.

Compound II, $1-(Cl_2B)-2-ClB_3H_7$, has been prepared by a Friedel-Crafts type reaction between $2-ClB_5H_8$ and BCl_3 (eq 4). Anhydrous FeCl₃ was found to be a specific catalyst for

$$2-\text{ClB}_{5}\text{H}_{8} + \text{BCl}_{3} + \frac{\text{FeCl}_{3}}{45 \text{ }^{\circ}\text{C}} + 1-(\text{Cl}_{2}\text{B})-2-\text{ClB}_{5}\text{H}_{7} + \text{HCl}$$
(4)

this reaction, which requires mild conditions in order to minimize decomposition of the $2-ClB_5H_8$.

The ¹¹B NMR spectra of I and II are shown in Figure 1; their associated chemical shifts and assignments are tabulated in Table I. The apical B(1) cage-boron resonances, which appear at -51 ppm, are broadened by coupling to the boron

⁽⁹⁾ Gaines, D. F.; Iorns, T. V.; Clevenger, E. N. Inorg. Chem. 1971, 10, 1096-1097.

atoms of the Cl₂B groups. These couplings are partially resolved in the Cl_2B resonances of I and II at -75 and -73 ppm, respectively. This loss of coupling structure in the high-field resonance of σ -bonded boron atoms is also observed in 1,2'- $(B_5H_8)_2$.⁹ The chemical shifts of the B(1) boron atoms of I and II are very similar to the chemical shifts of the apical resonances in their parent boranes (B₅H₉ and 2-ClB₅H₈, respectively⁸), while corresponding resonances in $1,1'-(B_5H_8)_2$ and $1,2'-(B_5H_8)_2$ are shifted several ppm upfield.^{2,9} It is noteworthy that the Cl₂B resonances in I and II have ¹¹B chemical shifts closer to that of B_2Cl_4 than to the chemical shift ranges for Cl₂B-substituted aryl or alkyl compounds.¹⁰

The ¹H NMR data for I and II in Table II are consistent with the structure deduced from the ¹¹B NMR spectra. The spectrum of II shows two distinct quartets at 2.25 and 2.00 ppm, representing the two types of basal-terminal hydrogens in the product.

Compound I was initially isolated from the reaction of B_5H_9 and PCl₃ in the presence of AlCl₃ at 100 °C. Apparently, a small quantity of BCl₃ is formed under these conditions from the degradation of B_5H_9 . Subsequent experiments showed that improved yields of I could be obtained by adding excess BCl₃. Compound I was not produced if a solvent such as benzene or dichloromethane was used for the reaction. Instead, ¹¹B NMR spectra indicated the formation of at least two 1phosphinopentaborane derivatives.¹¹

Compound II was initially isolated in small quantities from an attempted polymerization of 2-ClB₃H₈ using FeCl₃ as a Friedel–Crafts catalyst (eq 5). We originally conjectured that

$$2\text{-}ClB_{5}H_{8} + FeCl_{3} \xrightarrow{45 \circ C} 1\text{-}(Cl_{2}B)\text{-}2\text{-}ClB_{5}H_{7}$$
(5)

II was formed by degradation of a coupled pentaborane species by FeCl₃. However, this hypothesis was abandoned when the reaction of FeCl₃ with $1,2'-(B_5H_8)_2$, under similar conditions, produced only the new 1-chloro derivative of the bi(pentaborane) (eq 6). The addition of BCl_3 to the 2-ClB₅H₈/FeCl₃

$$1,2'-(B_5H_8)_2 \xrightarrow{FeCl_3} 1'-Cl-1,2'-(B_5H_8)(B_5H_7)$$
 (6)

reaction system increased the yield of II, indicating that its production is properly described by eq 4. The necessary BCl_3 in the reaction shown in eq 5 is presumed a result of in situ degradation of 2-ClB₅H₈ in contact with FeCl₃.

The FeCl₃ Catalyst System. Anhydrous FeCl₃ is a necessary catalyst for the production of II from BCl_3 and 2- ClB_5H_8 , as shown in eq 4. When $AlCl_3$ was substituted for $FeCl_3$ in the BCl₃/2-ClB₅H₈ reaction system, no 1-Cl₂B-substituted product was isolated. Conversely, an attempt to synthesize I via catalysis with FeCl₃, as shown in eq 7, also failed. These

$$\mathbf{B}_{5}\mathbf{H}_{9} + \mathbf{B}\mathbf{C}\mathbf{I}_{3} \xrightarrow{\mathbf{FeCI}_{3}} \mathbf{1} - \mathbf{C}\mathbf{I}\mathbf{B}_{5}\mathbf{H}_{8}$$
(7)

syntheses indicate that AlCl₃ and FeCl₃ have separate and distinct synthetic applications in these systems.

During the reaction represented by eq 5, the color of the FeCl₃ catalyst lightened dramatically. Investigation of the catalyst residue by X-ray powder patterns revealed that, after 4 days of reaction, no anhydrous FeCl₃ remained. The observed powder lines did not correspond to FeCl₂ and were not identified.

The formation of 1-halopentaborane derivatives is the major identified side reaction of the FeCl₃ catalyst system. Examples

- Noth, H.; Wrackmeyer, B. NMR: Basic Princ. Prog. 1978, 14, (10) 129-131. 257
- (11) The ${}^{11}B{}^{1}H{}$ NMR spectra exhibited singlets at -8.8 and -10.6 ppm (basal borons) and two doublets at -41.4 and -52.1 ppm (apical borons; J_{BP} = 270 and 220 Hz, respectively). Urry, G.; Wartik, T.; Moore, R. E.; Schlesinger, H. I. J. Am. Chem.
- (12)Soc. 1954, 76, 5293-5298.

of this halogenation behavior have been shown in eq 6 and 7. The result observed in the reaction represented by eq 5 can also be attributed to halogenation by FeCl₃. Scheme I suggests that $1,2-Cl_2B_5H_7$ may be formed via the halogenation of 2- ClB_5H_8 with FeCl₃. This 1,2- $Cl_2B_5H_7$ species is somewhat unstable at ambient temperature, and its decomposition at elevated temperature is a plausible source of BCl₃. The presence of BCl₃ then gives rise to II through the proposed reaction pathway.

Scheme I

$$2\text{-ClB}_{5}H_{8} + \text{FeCl}_{3} \xrightarrow{40 \text{ °C}} 1,2\text{-Cl}_{2}B_{5}H_{7}$$
$$1,2\text{-Cl}_{2}B_{5}H_{7} \xrightarrow{40 \text{ °C}} BCl_{3}$$

Anhydrous FeBr₃ showed no catalytic activity in $1-X_2B$ substitution reactions. The reaction of Ph_2BCl and B_5H_9 in the presence of FeCl₃ produced (on the basis of ¹¹B NMR evidence) a boron-boron σ -bonded species (eq 8). The com-

$$Ph_2BCl + B_5H_9 \xrightarrow{FeCl_3} 1-(Ph_2B)B_5H_8$$
(8)

pound was never fully characterized, as we were unable to separate it from the Ph₂BCl starting material. In contrast, when a similar reaction using FeBr₃ and Ph₂BBr was attempted, $1-BrB_5H_8$ was the only product. Small amounts of bromide ion in FeCl₃ catalyst samples were invariably found to interfere by producing $1-BrB_5H_8$. Consequently, it is clear that $FeCl_3$ used as a catalyst in these syntheses must be free of bromide ion.

The Chemistry of I and II

Reaction of I and II with Diethyl Ether. Boron-11 NMR evidence indicates that I and II react at elevated temperatures with diethyl ether and that the two derivatives produce similar products. When I is heated to 50 °C in the presence of an equimolar amount of ether, the Cl₂B-group resonance is broadened and shifted upfield by 25 ppm. This observation is consistent with the formation of a four-coordinate complex between the ether and the Cl_2B group of I (eq 9). Subsequent

$$1-(Cl_2B)B_5H_8 + Et_2O \xrightarrow{50 \circ C} 1-[Cl_2B\cdot OEt_2]B_5H_8 \quad (9)$$

heating of the sample to 70 °C causes decomposition of the complex and the formation of B_5H_9 . Similarly, heating II to 80 °C in the presence of ether produces $2-ClB_5H_8$. No other boron-containing products were observed in NMR spectra of the reaction mixtures. This suggests that the Cl_2B portion of the starting material and any other borane residues are incorporated either in high molecular weight compounds or in solids coating the interior surface of the NMR tubes.

A proposed mechanism for the formation of B_5H_9 from I is shown in Scheme II. The proposal involves the formation of a four-coordinate intermediate, as observed by NMR spectroscopy, and subsequent intramolecular hydrogen transfer with the intermediate in a six-membered chair conformation. The mechanism implies that the borane and two byproduct molecules are formed in a quantitative conversion based on pentaborane product.

Scheme II

1-(Dichloroboryl)pentaboranes(9)

In contrast with the behavior of I and II, B₂Cl₄ reacts rapidly with diethyl ether at low temperatures (eq 10).¹³ Ethyl

$$B_2Cl_4 \cdot OEt_2 \xrightarrow{-78 \circ C - room \ temp} "BOCl_2" + 2EtCl (10)$$

chloride was the only identified product of the reaction.

The 1,2'- and 2,2'-bi(pentaborane) isomers, on the other hand, are relatively inert in ether solutions. Neither isomer shows evidence of reaction or isomerization at 100 °C in diethyl ether.¹³

It is interesting to note that I and II show no evidence for isomerization in the presence of diethyl ether. Were isomerization observed in these derivatives, one might expect the formation of hexaborane derivatives, as is observed with (μ - $Me_2B)B_5H_8$ (eq 11).¹⁴ While it has been inferred that such

$$(\mu-\mathrm{Me}_2\mathrm{B})\mathrm{B}_5\mathrm{H}_8 \xrightarrow{\mathrm{Et}_2\mathrm{O}} 4,5-\mathrm{Me}_2\mathrm{B}_6\mathrm{H}_8 \qquad (11)$$

boron insertion reactions occur from the bridging position, the actual intermediate operating in the insertion may contain a terminal R_2B unit. It is evident that for I and II the activation energy for isomerization is greater than the activation energy for cleavage of the boron-boron σ bond. A study of the chemistry of various trigonal boron derivatives of pentaborane may lead to a better understanding of the mechanistic pathway for the production of hexaboranes from B_5H_9 .

Reaction of II with Bu₃SnH. Tri-n-butyltin hydride is an effective dehalogenation agent for 1- and 2-halopentaboranes.¹⁵ Compound II was reacted with n-Bu₃SnH in an effort to replace some or all of its chlorine atoms with hydrogen atoms. The only isolated products of this reaction were coupled boranes (eq 12). The mechanism of formation of the 1,2'-

$$1-(Cl_2B)-2-ClB_5H_7 + Bu_3SnH \xrightarrow[1]{\text{ambient}} \\ 1,2'-(B_5H_8)_2 + \text{other nonvolatile oligomers (12)}$$

- Gaines, D. F.; Heppert, J. A.; Kulzick, M. J., unpublished results. Iorns, T. V.; Gaines, D. F. J. Am. Chem. Soc. 1970, 92, 4571-4574. (13)
- (15) Gaines, D. F.; Viens, V. A.; Kulzick, M. J., unpublished results.

interpentaborane bonds in the products is unclear. The $1,2'-(B_5H_8)_2$ species has been independently synthesized via Friedel-Crafts catalyzed coupling (eq 13).³ Such a mecha-

$$B_5H_9 + 2 \cdot BrB_5H_8 \xrightarrow{AlBr_3} 1,2' \cdot (B_5H_8)_2 + HBr \quad (13)$$

nism may also be operating here in the presence of a tetravalent tin Lewis acid.

Reaction of I and II with Ethylene. Both I and II react with ethylene at room temperature to form 1-[2-(Cl₂B)C₂H₄] pentaborane derivatives (eq 14). The chemical properties of

$$1-(Cl_2B)B_5H_8 + C_2H_4 \xrightarrow{\text{room temp}} 1-[2-(Cl_2B)C_2H_4]B_5H_8$$
(14)

the $1-(Cl_2B)$ pentaborane derivatives again appear to parallel the reactivity of B_2Cl_4 (eq 1). The reactions between ethylene and I and II form only insertion products in aliphatic solvents but produce significant quantities of ethylbenzene- d_6 when conducted in benzene- d_6 solution.

The chemistry of the new 1-(Cl₂B) derivatives of pentaborane appears to parallel the reactivity of B_2Cl_4 more closely than the reactivity of intercage boron-boron σ bonds. The cleavage reactions of I and II observed in the presence of ether and the insertion of ethylene into the boron-boron σ bond of I and II are, superficially, very similar to the corresponding reactions of B_2Cl_4 . Insufficient mechanistic data are currently available to conclude that the processes are actually identical. The formation of oligomers from II in the presence of n-Bu₃SnH suggests that the boron-boron σ bond may be a site for electrophilic attack, much like the boron-boron σ bond of $1,2'-(B_5H_8)_2$.

Acknowledgment. This work was supported in part by grants, including departmental instrument grants, from the National Science Foundation.

Registry No. I, 82544-57-8; II, 82554-82-3; B₅H₉, 19624-22-7; BCl₃, 10294-34-5; 2-ClB₅H₈, 19469-14-8; Et₂O, 60-29-7; n-Bu₃SnH, 688-73-3; 1,2'-(B₅H₈)₂, 31831-99-9; H₂C=CH₂, 74-85-1; 1-[2-(Cl₂B)C₂H₄]B₅H₈, 82544-58-9; FeCl₃, 7705-08-0; 1'-Cl-1,2'- $(B_5H_8)(B_5H_7)$, 82544-59-0.